JEE Main & Advanced
Mathematics
Vector Algebra
Question Bank
Self Evaluation Test - Vector Algebra
question_answer
The value of 'x' for which the angle between the vectors \[\overset{\to }{\mathop{a}}\,=2{{x}^{2}}\hat{i}+4x\hat{j}+\hat{k}\] and \[\overset{\to }{\mathop{b}}\,=7\hat{i}-2\hat{j}+x\hat{k}\] is obtuse are
A)\[\operatorname{x} < 0\]
B)\[x>\frac{1}{2}\]
C)\[0<x<\frac{1}{2}\]
D)\[x\in R\]
Correct Answer:
C
Solution :
[c] \[0<x<\frac{1}{2}\] \[\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=(2{{x}^{2}}\hat{i}+4x\hat{j}+\hat{k}).(7\hat{i}-2\hat{j}+x\hat{k})\] \[=2{{x}^{2}}(7)+(4x)(-2)+(1)(x)=14{{x}^{2}}-7x\] \[\hat{i}\cdot \hat{i}=1s=\hat{j}\cdot \hat{j}=1\] The angle between vectors \[\overset{\to }{\mathop{a}}\,\] and \[\overset{\to }{\mathop{b}}\,\] is obtuse \[\Rightarrow \,\vec{a}.\vec{b}<0\Rightarrow 14{{x}^{2}}-7x<0\] \[\Rightarrow 7x(2x-1)<0\Rightarrow 14x\left( x-\frac{1}{2} \right)<0\] \[\Rightarrow x\] lies between 0 and \[\frac{1}{2}\] (By the Method of Intervals) i.e., \[0<x<\frac{1}{2}.\] Hence, the angle between the given vectors is obtuse if \[x\in \left( 0,\frac{1}{2} \right)\].