A) \[{{a}_{1}}+{{a}_{2}}+....+{{a}_{n}}=n\]
B) \[{{a}_{1}}+{{a}_{2}}+....+{{a}_{n}}=1\]
C) \[{{a}_{1}}+{{a}_{2}}+....+{{a}_{n}}=0\]
D) \[{{a}_{1}}={{a}_{2}}={{a}_{3}}=....={{a}_{n}}=0\]
Correct Answer: C
Solution :
[c] Given \[{{a}_{1}}{{\vec{r}}_{1}}+{{a}_{2}}{{\vec{r}}_{2}}+.....+{{a}_{n}}{{\vec{r}}_{n}}=0\] Now \[\vec{a}+{{\vec{r}}_{1}}'={{\vec{r}}_{1}}\] and so onYou need to login to perform this action.
You will be redirected in
3 sec