A) \[\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\,\]
B) \[\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,-\overset{\to }{\mathop{c}}\,\]
C) \[\overset{\to }{\mathop{a}}\,-\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\,\]
D) \[-\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\,\]
Correct Answer: C
Solution :
[c] Let O be the origin and ABCD be the parallelogram. In \[\Delta \,ODC,\] \[\overrightarrow{OD}=\overrightarrow{OC}+\overrightarrow{CD}\] \[\overrightarrow{CD}=-\overrightarrow{AB}\] and \[\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}\] [In \[\Delta \,AOB\]] \[=\overset{\to }{\mathop{b}}\,-\overset{\to }{\mathop{a}}\,\] Thus, \[\overrightarrow{CD}=-\overrightarrow{AB}=\overrightarrow{a}-\overrightarrow{b}\]You need to login to perform this action.
You will be redirected in
3 sec