A) \[\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{b}} \right|}^{2}}} \right)\vec{b}\And \vec{a}-\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{b}} \right|}^{2}}} \right)\vec{b}\]
B) \[\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{a}} \right|}^{2}}} \right)\vec{b}\And \vec{a}+\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{a}} \right|}^{2}}} \right)\vec{b}\]
C) \[\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{a}} \right|}^{2}}} \right)\vec{a}-\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{b}} \right|}^{2}}} \right)\vec{a}\]
D) None of these
Correct Answer: A
Solution :
[a] \[\overrightarrow{OM}=\] component |
of \[\vec{a}\] along \[\vec{b}\] |
\[\overrightarrow{MA}=\]component of \[\vec{a}\] |
Perpendicular to \[\vec{b}\] |
![]() |
\[\Delta \,OMA\Rightarrow \cos \theta =\frac{OM}{OA}\] |
\[\Rightarrow \,\,OM=|\overrightarrow{OM}|=|\overrightarrow{OA}|cos\theta =|\vec{a}|cos\theta \] |
\[\because \vec{a}.\vec{b}=|\vec{a}||\vec{b}|cos\theta =|\vec{b}|(OM)\] |
\[\therefore \,\overrightarrow{OM}=|\overrightarrow{OM}|\hat{b}=\left( \frac{\vec{a}.\vec{b}}{|\vec{b}|} \right)\frac{{\vec{b}}}{|\vec{b}|}=\left( \frac{\vec{a}.\vec{b}}{|\vec{b}{{|}^{2}}} \right)\vec{b}\] |
\[\overrightarrow{OM}+\overrightarrow{MA}=\overrightarrow{OA}\therefore \overrightarrow{MA}=\overrightarrow{OA}-\overrightarrow{OM}\] |
\[=\vec{a}-\left( \frac{\vec{a}\cdot \vec{b}}{|\vec{b}{{|}^{2}}} \right)\vec{b}\] |
You need to login to perform this action.
You will be redirected in
3 sec