JEE Main & Advanced Mathematics Definite Integration Question Bank Summation of series by Definite Integration, Gamma function, Leibnitz's rule

  • question_answer
    The value of \[\underset{n\to \infty }{\mathop{\lim }}\,\left[ \frac{n}{1+{{n}^{2}}}+\frac{n}{4+{{n}^{2}}}+\frac{n}{9+{{n}^{2}}}+....+\frac{1}{2n} \right]\]is equal to                     [Bihar CEE 1994]

    A)                 \[\frac{\pi }{2}\]

    B)                 \[\frac{\pi }{4}\]

    C)                 1             

    D)                 None of these

    Correct Answer: B

    Solution :

               We have, \[\underset{n\to \infty }{\mathop{\lim }}\,\,\,\left[ \,\frac{n}{1+{{n}^{2}}}+\frac{n}{4+{{n}^{2}}}+......+\frac{1}{2n}\, \right]\]                    \[=\underset{n\to \infty }{\mathop{\lim }}\,\,\sum\limits_{r=1}^{n}{\,\,\frac{n}{{{r}^{2}}+{{n}^{2}}}}=\underset{n\to \infty }{\mathop{\lim }}\,\,\sum\limits_{r=1}^{n}{\,\,\frac{n}{{{n}^{2}}\left( 1+\frac{{{r}^{2}}}{{{n}^{2}}} \right)}}\]                    \[=\underset{n\to \infty }{\mathop{\lim }}\,\,\sum\limits_{r=1}^{n}{\,\,\frac{1}{n\,\left( 1+\frac{{{r}^{2}}}{{{n}^{2}}} \right)}=\int_{0}^{1}{\frac{dx}{\text{1}+{{x}^{2}}}}}\], \[\left\{ \text{Applying formula, }\underset{n\to \infty }{\mathop{\lim }}\,\,\sum\limits_{r=0}^{n-1}{\,\,\left\{ f\left( \frac{r}{n} \right) \right\}.\frac{1}{n}=\int_{0}^{1}{f(x)dx}} \right\}\]                                 \[=[{{\tan }^{-1}}x]_{0}^{1}={{\tan }^{-1}}1-{{\tan }^{-1}}0=\frac{\pi }{4}.\]


You need to login to perform this action.
You will be redirected in 3 sec spinner