JEE Main & Advanced Mathematics Rectangular Cartesian Coordinates Question Bank Transformation of axes and Locus

  • question_answer
    A point moves such that the sum of its distances from two fixed points (ae,0) and (-ae,0) is always 2a. Then equation of its locus is [MNR 1981]

    A) \[\]\[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{a}^{2}}(1-{{e}^{2}})}=1\]

    B) \[\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{a}^{2}}(1-{{e}^{2}})}=1\]

    C) \[\frac{{{x}^{2}}}{{{a}^{2}}(1-{{e}^{2}})}+\frac{{{y}^{2}}}{{{a}^{2}}}=1\]

    D) None of these

    Correct Answer: A

    Solution :

    Let \[A\,(ae,\,\,0)\] and \[B\,(-ae,\,\,0)\] be two given points and \[(h,\,\,k)\] be the coordinates of the moving point P. Now, \[PA+PB=2a\] \[\Rightarrow \,\,\sqrt{{{(h-ae)}^{2}}+{{k}^{2}}}+\sqrt{{{(h+ae)}^{2}}+{{k}^{2}}}=2a\]     .....(i) But, we know that \[[{{(h-ae)}^{2}}+{{k}^{2}}]-[{{(h+ae)}^{2}}+{{k}^{2}}]=-4aeh\]    .....(ii) Dividing (ii) by (i), we get \[\sqrt{[{{(h-ae)}^{2}}+{{k}^{2}}]}-\sqrt{[{{(h+ae)}^{2}}+{{k}^{2}}]}=-2eh\]   .....(iii) Adding (i) and (iii), \[2\sqrt{{{[h-ae)}^{2}}+{{k}^{2}}]}=2\,(a-eh)\] Squaring both sides, we get \[\Rightarrow \,\,{{(h-ae)}^{2}}+{{k}^{2}}={{(a-eh)}^{2}}\,\Rightarrow \,\,\frac{{{h}^{2}}}{{{a}^{2}}}+\frac{{{k}^{2}}}{{{a}^{2}}(1-{{e}^{2}})}=1\] Hence locus of P is \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{a}^{2}}(1-{{e}^{2}})}=1\].


You need to login to perform this action.
You will be redirected in 3 sec spinner