JEE Main & Advanced Mathematics Trigonometric Identities Question Bank Trigonometrical ratios of sum and difference of two and three angles

  • question_answer
    If \[\sin A=\frac{1}{\sqrt{10}}\]and \[\sin B=\frac{1}{\sqrt{5}},\]where A and B are positive acute angles, then \[A+B=\] [MP PET 1986]

    A) \[\pi \]

    B) \[\pi /2\]

    C) \[\pi /3\]

    D) \[\pi /4\]

    Correct Answer: D

    Solution :

    We know that \[\sin \,(A+B)=\sin A\cos B+\cos A\sin B\] \[=\frac{1}{\sqrt{10}}\sqrt{1-\frac{1}{5}}+\frac{1}{\sqrt{5}}\,\sqrt{1-\frac{1}{10}}\] \[=\frac{1}{\sqrt{10}}\sqrt{\frac{4}{5}}+\frac{1}{\sqrt{5}}\sqrt{\frac{9}{10}}=\frac{1}{\sqrt{50}}(2+3)=\frac{5}{\sqrt{50}}=\frac{1}{\sqrt{2}}\] \[\Rightarrow \,\,\sin \,(A+B)=\sin \frac{\pi }{4}\] Hence, \[A+B=\frac{\pi }{4}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner