JEE Main & Advanced Mathematics Trigonometric Identities Question Bank Trigonometrical ratios of sum and difference of two and three angles

  • question_answer
    If \[\cos \theta =\frac{8}{17}\] and \[\theta \] lies in the 1st quadrant, then the value of \[\cos (30{}^\circ +\theta )+\cos (45{}^\circ -\theta )+\cos (120{}^\circ -\theta )\] is

    A) \[\frac{23}{17}\left( \frac{\sqrt{3}-1}{2}+\frac{1}{\sqrt{2}} \right)\]

    B) \[\frac{23}{17}\left( \frac{\sqrt{3}+1}{2}+\frac{1}{\sqrt{2}} \right)\]

    C) \[\frac{23}{17}\left( \frac{\sqrt{3}-1}{2}-\frac{1}{\sqrt{2}} \right)\]

    D) \[\frac{23}{17}\left( \frac{\sqrt{3}+1}{2}-\frac{1}{\sqrt{2}} \right)\]

    Correct Answer: A

    Solution :

    Since \[\cos \theta =\frac{8}{17}\] and \[0<\theta <\frac{\pi }{2}\] \[\Rightarrow \,\,\sin \theta =\sqrt{1-\frac{{{8}^{2}}}{{{17}^{2}}}}=\frac{15}{17}\] The value of the given expression \[=\cos \,\,{{30}^{o}}\,.\,\cos \theta -\sin \,\,{{30}^{o}}\sin \theta +\cos \,\,{{45}^{o}}\cos \theta \]           \[+\sin \,\,{{45}^{o}}\sin \theta +\cos \,\,{{120}^{o}}\cos \theta +\sin \,\,{{120}^{o}}\sin \theta \] \[=\cos \theta \,\left( \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}-\frac{1}{2} \right)-\sin \theta \,\left( \frac{1}{2}-\frac{1}{\sqrt{2}}-\frac{\sqrt{3}}{2} \right)\] \[=\frac{8}{17}\,\left( \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}-\frac{1}{2} \right)+\frac{15}{17}\,\left( \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}-\frac{1}{2} \right)\] \[=\frac{23}{17}\,\left( \frac{\sqrt{3}-1}{2}+\frac{1}{\sqrt{2}} \right)\].


You need to login to perform this action.
You will be redirected in 3 sec spinner