JEE Main & Advanced Mathematics Trigonometric Identities Question Bank Trigonometrical ratios of sum and difference of two and three angles

  • question_answer
    If \[\cos x+\cos y+\cos \alpha =0\] and \[\sin x+\sin y+\sin \alpha =0,\] then \[\cot \,\left( \frac{x+y}{2} \right)=\] [Karnataka CET 2001]

    A) \[\sin \alpha \]

    B) \[\cos \alpha \]

    C) \[\cot \alpha \]

    D) \[\sin \,\left( \frac{x+y}{2} \right)\]

    Correct Answer: C

    Solution :

    Given equation \[\cos x+\cos y+\cos \alpha =0\] and \[\sin x+\sin y+\sin \alpha =0.\] The given equation may be written as \[\cos x+\cos y=-\cos \alpha \] and \[\sin x+\sin y=-\sin \alpha .\]Therefore \[2\cos \left( \frac{x+y}{2} \right)\cos \left( \frac{x-y}{2} \right)=-\cos \alpha \] ?..(i)  \[2\sin \left( \frac{x+y}{2} \right)\cos \left( \frac{x-y}{2} \right)=-\sin \alpha \] ?..(ii) Divide (i) by (ii), we get \[\frac{2\cos \left( \frac{x+y}{2} \right)\cos \left( \frac{x-y}{2} \right)}{2\sin \left( \frac{x+y}{2} \right)\cos \left( \frac{x-y}{2} \right)}\] \[=\frac{\cos \alpha }{\sin \alpha }\] Þ \[\cot \left( \frac{x+y}{2} \right)=\cot \alpha \].


You need to login to perform this action.
You will be redirected in 3 sec spinner