JEE Main & Advanced Mathematics Trigonometric Identities Question Bank Trigonometrical ratios of sum and difference of two and three angles

  • question_answer
    If \[\sin \theta +\sin 2\theta +\sin 3\theta =\sin \alpha \]and \[\cos \theta +\cos 2\theta +\cos 3\theta =\cos \alpha \], then q  is equal to [AMU 2001]

    A) \[\alpha /2\]

    B) \[\alpha \]

    C) \[2\alpha \]

    D) \[\alpha /6\]

    Correct Answer: A

    Solution :

    \[\sin \theta +\sin \,3\theta +\sin \,2\theta =\sin \,\alpha \] Þ \[2\sin 2\theta \cos \theta +\sin 2\theta =\sin \alpha \] Þ \[\sin 2\theta (2\cos \theta +1)=\sin \alpha \] ?..(i) Now \[\cos \theta +\cos 3\theta +\cos 2\theta =\cos \alpha \] \[2\cos 2\,\theta \cos \,\theta +\cos 2\theta =\cos \alpha \] \[\cos 2\theta \,(2\cos \theta +1)=\cos \alpha \] ?..(ii) From (i) and (ii), \[\tan 2\theta =\tan \alpha \] Þ \[2\theta =\alpha \] Þ \[\theta =\alpha /2\].


You need to login to perform this action.
You will be redirected in 3 sec spinner