JEE Main & Advanced Mathematics Trigonometric Identities Question Bank Trigonometrical ratios of sum and difference of two and three angles

  • question_answer
    The value of \[\cot {{70}^{o}}+4\cos {{70}^{o}}\] is [Orissa JEE 2003]

    A) \[\frac{1}{\sqrt{3}}\]

    B) \[\sqrt{3}\]

    C) \[2\sqrt{3}\]

    D) \[\frac{1}{2}\]

    Correct Answer: B

    Solution :

    Now, \[\cot {{70}^{o}}+4\cos {{70}^{o}}=\frac{\cos {{70}^{o}}+4\sin {{70}^{o}}\cos {{70}^{o}}}{\sin {{70}^{o}}}\] \[=\frac{\cos {{70}^{o}}+2\sin {{140}^{o}}}{\sin {{70}^{o}}}=\frac{\cos {{70}^{o}}+2\sin ({{180}^{o}}-{{40}^{o}})}{\sin {{70}^{o}}}\] \[=\frac{\sin {{20}^{o}}+\sin {{40}^{o}}+\sin {{40}^{o}}}{\sin {{70}^{o}}}=\frac{2\sin {{30}^{o}}\cos {{10}^{o}}+\sin {{40}^{o}}}{\sin {{70}^{o}}}\] \[=\frac{\sin {{80}^{o}}+\sin {{40}^{o}}}{\sin {{70}^{o}}}=\frac{2\sin {{60}^{o}}\cos {{20}^{o}}}{\sin {{70}^{o}}}=\sqrt{3}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner