JEE Main & Advanced Mathematics Trigonometric Identities Question Bank Trigonometrical ratios of sum and difference of two and three angles

  • question_answer
    If \[x=\cos 10{}^\circ \cos 20{}^\circ \cos 40{}^\circ ,\]then the value of \[x\] is  [Roorkee 1995]

    A) \[\frac{1}{4}\tan 10{}^\circ \]

    B) \[\frac{1}{8}\cot 10{}^\circ \]

    C) \[\frac{1}{8}\text{cosec}10{}^\circ \]

    D) \[\frac{1}{8}\sec 10{}^\circ \]

    Correct Answer: B

    Solution :

    \[x=\cos \,\,{{10}^{o}}\,\cos \,\,{{20}^{o}}\,\,\cos \,\,{{40}^{o}}\] \[=\frac{1}{2\,\,\sin \,\,{{10}^{o}}}\,[2\,\,\sin \,\,{{10}^{o}}\cos \,\,{{10}^{o}}\cos \,\,{{20}^{o}}\,\,\cos \,\,{{40}^{o}}]\] \[=\frac{1}{2\,.\,2\,\,\sin \,\,{{10}^{o}}}\,[2\,\,\sin \,\,{{20}^{o}}\cos \,\,{{20}^{o}}\,\,\cos \,\,{{40}^{o}}]\] \[=\frac{1}{2\,.\,4\sin {{10}^{o}}}[2\sin {{40}^{o}}\cos {{40}^{o}})=\frac{1}{8\sin {{10}^{o}}}(\sin {{80}^{o}})\] \[=\frac{1}{8\,\,\sin \,\,{{10}^{o}}}\cos \,\,{{10}^{o}}=\frac{1}{8}\cot \,\,{{10}^{o}}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner