JEE Main & Advanced Mathematics Trigonometric Identities Question Bank Trigonometrical ratios of sum and difference of two and three angles

  • question_answer
    \[{{\cos }^{2}}\left( \frac{\pi }{4}-\beta  \right)-{{\sin }^{2}}\left( \alpha -\frac{\pi }{4} \right)=\]

    A) \[\sin (\alpha +\beta )\sin (\alpha -\beta )\]

    B) \[\cos (\alpha +\beta )\cos (\alpha -\beta )\]

    C) \[\sin (\alpha -\beta )\cos (\alpha +\beta )\]

    D) \[\sin (\alpha +\beta )\cos (\alpha -\beta )\]

    Correct Answer: D

    Solution :

    \[{{\cos }^{2}}\left( \frac{\pi }{4}-\beta  \right)-{{\sin }^{2}}\left( \alpha -\frac{\pi }{4} \right)\] \[=\cos \,\left( \frac{\pi }{4}-\beta +\alpha -\frac{\pi }{4} \right)\,\cos \,\left( \frac{\pi }{4}-\beta -\alpha +\frac{\pi }{4} \right)\,\] \[=\cos (\alpha -\beta )\cos \left( \frac{\pi }{2}-\overline{\alpha +\beta } \right)=\cos (\alpha -\beta )\sin (\alpha +\beta )\].


You need to login to perform this action.
You will be redirected in 3 sec spinner