JEE Main & Advanced Mathematics Trigonometric Identities Question Bank Trigonometrical ratios of sum and difference of two and three angles

  • question_answer
    \[{{\cos }^{2}}\left( \frac{\pi }{6}+\theta  \right)-{{\sin }^{2}}\left( \frac{\pi }{6}-\theta  \right)=\] [EAMCET 2001]

    A) \[\frac{1}{2}\cos 2\theta \]

    B) 0

    C) \[-\frac{1}{2}\cos 2\,\theta \]

    D) \[\frac{1}{2}\]       

    Correct Answer: A

    Solution :

    \[{{\cos }^{2}}\left( \frac{\pi }{6}+\theta  \right)-{{\sin }^{2}}\left( \frac{\pi }{6}-\theta  \right)\] \[=\cos \left( \frac{\pi }{6}+\theta +\frac{\pi }{6}-\theta  \right)\cos \left( \frac{\pi }{6}+\theta -\frac{\pi }{6}+\theta  \right)\]\[[\because {{\cos }^{2}}A-{{\sin }^{2}}B=\cos (A+B)\cos (A-B)]\] \[=\cos \frac{2\pi }{6}\cos 2\theta =\frac{1}{2}\cos 2\theta \].


You need to login to perform this action.
You will be redirected in 3 sec spinner