JEE Main & Advanced Mathematics Trigonometric Identities Question Bank Trigonometrical ratios of sum and difference of two and three angles

  • question_answer
    If \[b\sin \alpha =a\sin (\alpha +2\beta ),\] then \[\frac{a+b}{a-b}=\]

    A) \[\frac{\tan \beta }{\tan (\alpha +\beta )}\]

    B) \[\frac{\cot \beta }{\cot (\alpha -\beta )}\]

    C) \[\frac{-\cot \beta }{\cot (\alpha +\beta )}\]

    D) \[\frac{\cot \beta }{\cot (\alpha +\beta )}\]

    Correct Answer: C

    Solution :

    We have \[b\,\sin \,\alpha =a\,\sin \,(\alpha +2\beta )\,\Rightarrow \,\frac{a}{b}=\frac{\sin \,\alpha }{\sin \,(\alpha +2\beta )}\] \[\Rightarrow \,\,\frac{a+b}{a-b}=\frac{\sin \,\alpha +\sin \,(\alpha +2\beta )}{\sin \,\alpha -\sin \,(\alpha +2\beta )}=\frac{2\,\sin \,(\alpha +\beta )\,\cos \,\beta }{-2\,\cos \,(\alpha +\beta )\,\sin \,\beta }\] \[=-\tan \,(\alpha +\beta )\,\cot \,\beta =-\frac{\cot \beta }{\cot \,(\alpha +\beta )}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner