JEE Main & Advanced Mathematics Trigonometric Identities Question Bank Trigonometrical ratios of sum and difference of two and three angles

  • question_answer
    \[\frac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}=\] [Roorkee 1970; IIT 1966]

    A) \[\frac{\cos B+\sin B}{\cos B-\sin B}\]

    B) \[\frac{\cos A+\sin A}{\cos A-\sin A}\]

    C) \[\frac{\cos A-\sin A}{\cos A+\sin A}\]

    D) None of these

    Correct Answer: B

    Solution :

    \[\frac{\sin \,(B+A)+\cos \,(B-A)}{\sin \,(B-A)+\cos \,(B+A)}\] \[=\frac{\sin \,(B+A)+\sin \,({{90}^{o}}-\overline{B-A})}{\sin \,(B-A)+\sin \,({{90}^{o}}-\overline{A+B})}\] \[=\,\frac{2\,\sin \,(A+{{45}^{o}})\,\cos \,({{45}^{o}}-B)}{2\,\sin \,({{45}^{o}}-A)\,\cos \,({{45}^{o}}-B)}\] \[=\frac{\sin \,(A+{{45}^{o}})}{\sin \,({{45}^{o}}-A)}=\frac{\cos A+\sin A}{\cos A-\sin A}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner