JEE Main & Advanced Mathematics Trigonometric Identities Question Bank Trigonometrical ratios of sum and difference of two and three angles

  • question_answer
    If \[y=(1+\tan A)(1-\tan B)\] where \[A-B=\frac{\pi }{4}\], then \[{{(y+1)}^{y+1}}\] is equal to [J & K 2005]

    A) 9

    B) 4

    C) 27

    D) 81

    Correct Answer: C

    Solution :

    \[A-B=\frac{\pi }{4}\,\Rightarrow \,\tan \,(A-B)=\tan \frac{\pi }{4}\] \[\Rightarrow \,\,\frac{\tan A-\tan B}{1+\tan A\,\tan B}=1\] \[\Rightarrow \,\,\tan A-\tan B-\tan A\,\tan B=1\] \[\Rightarrow \,\,\tan A-\tan B-\tan A\,\tan B+1=2\] \[\Rightarrow \,\,(1+\,\tan A)\,\,(1-\tan B)=2\] Þ \[y=2\] Hence, \[{{(y+1)}^{y+1}}={{(2+1)}^{2+1}}={{(3)}^{3}}=27\]. Trick : Put suitable A and B as \[A-B=\frac{\pi }{4}\] i.e.,\[A=\frac{\pi }{4},B=0\] \[\therefore \,\,\,\left( 1+\tan \frac{\pi }{4} \right)\,(1-\tan {{0}^{o}})=2(1)=2\].


You need to login to perform this action.
You will be redirected in 3 sec spinner