JEE Main & Advanced Mathematics Trigonometric Identities Question Bank Trigonometrical ratios of sum and difference of two and three angles

  • question_answer
    The value of \[\frac{\tan {{70}^{o}}-\tan {{20}^{o}}}{\tan {{50}^{o}}}=\] [Karnataka CET 2003]

    A) 1

    B) 2

    C) 3

    D) 0

    Correct Answer: B

    Solution :

    \[\frac{\tan {{70}^{o}}-\tan {{20}^{o}}}{\tan {{50}^{o}}}\] = \[\frac{\frac{\sin {{70}^{o}}}{\cos {{70}^{o}}}-\frac{\sin {{20}^{o}}}{\cos {{20}^{o}}}}{\frac{\sin {{50}^{o}}}{\cos {{50}^{o}}}}\]= \[\frac{\frac{\sin {{70}^{o}}\cos {{20}^{o}}-\cos {{70}^{o}}\sin {{20}^{o}}}{\cos {{70}^{o}}\cos {{20}^{o}}}}{\frac{\sin {{50}^{o}}}{\cos {{50}^{o}}}}\] = \[\frac{2}{2}\times \frac{\sin ({{70}^{o}}-{{20}^{o}})\cos {{50}^{o}}}{\cos {{70}^{o}}\cos {{20}^{o}}\sin {{50}^{o}}}\]= \[\frac{2\sin {{50}^{o}}\cos {{50}^{o}}}{2\cos {{70}^{o}}\cos {{20}^{o}}\sin {{50}^{o}}}\] = \[\frac{2\cos {{50}^{o}}}{\cos {{90}^{o}}+\cos {{50}^{o}}}=\frac{2\cos {{50}^{o}}}{0+\cos {{50}^{o}}}\] = 2.


You need to login to perform this action.
You will be redirected in 3 sec spinner