JEE Main & Advanced Mathematics Trigonometric Identities Question Bank Trigonometrical ratios of sum and difference of two and three angles

  • question_answer
    \[{{\cos }^{2}}\alpha +{{\cos }^{2}}(\alpha +120{}^\circ )+{{\cos }^{2}}(\alpha -120{}^\circ )\] is equal to   [MP PET 1993]

    A) 3/2

    B) 1

    C) 1/2

    D) 0

    Correct Answer: A

    Solution :

    \[{{\cos }^{2}}\alpha +{{\cos }^{2}}(\alpha +{{120}^{o}})+{{\cos }^{2}}(\alpha -{{120}^{o}})\] \[={{\cos }^{2}}\alpha +{{\left\{ \cos \,(\alpha +{{120}^{o}})+\cos \,(\alpha -{{120}^{o}}) \right\}}^{2}}\]\[-2\,\cos \,(\alpha +{{120}^{o}})\,\cos \,(\alpha -{{120}^{o}})\] \[={{\cos }^{2}}\alpha +{{\left\{ \,2\,\cos \,\,\alpha \,\cos \,{{120}^{o}} \right\}}^{2}}-2\,\left\{ {{\cos }^{2}}\alpha -{{\sin }^{2}}\,{{120}^{o}} \right\}\] \[={{\cos }^{2}}\alpha +{{\cos }^{2}}\alpha -2\,{{\cos }^{2}}\alpha +2\,{{\sin }^{2}}\,{{120}^{o}}\] \[=2{{\sin }^{2}}{{120}^{o}}=2\times \frac{3}{4}=\frac{3}{2}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner