JEE Main & Advanced Sample Paper JEE Main - Mock Test - 23

  • question_answer
    Let r be the range of \[n(\forall n\ge 1)\] observations \[{{x}_{1}},{{x}_{2}},....,{{x}_{n}}\],if\[S=\sqrt{\frac{\sum\limits_{i=1}^{n}{{{({{x}_{i}}-\overline{x})}^{2}}}}{n-1}}\]then

    A) \[S<r\sqrt{\frac{{{n}^{2}}+1}{n-1}}\]

    B) \[S\ge r\sqrt{\frac{n}{n-1}}\]

    C) \[S=r\sqrt{\frac{n}{n-1}}\]        

    D) \[S<r\sqrt{\frac{n}{n-1}}\]

    Correct Answer: D

    Solution :

    [d]: Here range = r = largest value - smallest value \[=Max\left| {{x}_{i}}-{{x}_{j}} \right|(i\ne j)\]and\[{{S}^{2}}=\frac{1}{n-1}\sum\limits_{i=1}^{n}{{{({{x}_{i}}-\overline{x})}^{2}}}\] Now,\[{{({{x}_{i}}-\overline{x})}^{2}}={{\left[ {{x}_{i}}-\frac{{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}}{n} \right]}^{2}}\] \[=\frac{1}{{{n}^{2}}}{{\left[ ({{x}_{i}}-{{x}_{1}})+({{x}_{i}}-{{x}_{2}})+...+({{x}_{i}}-{{x}_{n}}) \right]}^{2}}\] \[=\frac{1}{{{n}^{2}}}[({{x}_{i}}-{{x}_{1}})+({{x}_{i}}-{{x}_{2}})+...+({{x}_{i}}-{{x}_{i-1}})\] \[+({{x}_{i}}-{{x}_{i+1}})+...+{{({{x}_{i}}-{{x}_{n}})}^{2}}]\] \[\Rightarrow \]\[{{({{x}_{i}}-\overline{x})}^{2}}\le \frac{1}{{{n}^{2}}}{{[(n-1)r]}^{2}}\]\[(\because |{{x}_{i}}-{{x}_{j}}|\le r)\] \[\Rightarrow \]\[\frac{1}{n-1}\sum\limits_{i=1}^{n}{{{({{x}_{i}}\overline{x})}^{2}}\le \frac{1}{{{n}^{2}}(n-1)}}\sum\limits_{{}}^{{}}{{{[(n-1)r]}^{2}}}\] (summing up and dividing by (n - 1) both sides) \[\frac{1}{{{n}^{2}}}\frac{1}{n-}n{{(n-1)}^{2}}{{r}^{2}}=\frac{n-1}{n}{{r}^{2}}<\frac{n}{n-1}{{r}^{2}}\] \[\left( \because \forall n>1,n>\frac{1}{n} \right)\] Therefore\[{{S}^{2}}<\frac{n}{n-1}.{{r}^{2}}\]or\[S<r\sqrt{\frac{n}{n-1}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner