JEE Main & Advanced Sample Paper JEE Main - Mock Test - 38

  • question_answer
    If \[f(x)=\left\{ x\frac{{{e}^{(1/x)}}-{{e}^{(-1/x)}}}{{{e}^{(1/x)}}+{{e}^{(-1/x)}}} \right.,\,\,x\ne 0\] 0, x\[0,\,\,x=0\,\,\] then which of the following is true

    A) f is continuous and differentiable at every point

    B) f is continuous at every point but not differentiable

    C) f is differentiable at every point

    D) f is differentiable only at the origin  

    Correct Answer: B

    Solution :

    \[\operatorname{f}({{0}^{+}})=\,\,\underset{h\to 0}{\mathop{lim}}\,\,\,f(x)\,\,=\,\,\underset{h\to 0}{\mathop{lim}}\,\,f\,\left( 0+h \right)\] \[=\,\,\underset{h\to 0}{\mathop{\lim }}\,(0+h)\frac{{{e}^{1/0+h}}-{{e}^{1/0+h}}}{{{e}^{1/0+h}}+{{e}^{-1/0+h}}}=\,\,\underset{x\to 0}{\mathop{\lim }}\,h\,\frac{{{e}^{1/h}}-{{e}^{-1/h}}}{{{e}^{1/h}}+{{e}^{-1/h}}}=0\] and \[f({{0}^{-}})=\underset{h\to 0}{\mathop{lim}}\,(0-h)=\underset{x\to 0}{\mathop{lim}}\,-h\frac{{{e}^{-1/h}}-{{e}^{1/h}}}{{{e}^{-1/h}}+{{e}^{1/h}}}=0\] and \[\operatorname{f}(0)=0.\,\,\,\,\therefore \,\,f(0{{\,}^{+}})\,\,=\,\,f(0\,-)=f(0)\] Hence f is continuous at \[\operatorname{x} = 0\] At remaining points f(x) is obviously continuous. Thus it is everywhere continuous. Again, \[\operatorname{Lf}'\,(0)\,\,=\,\,\underset{h\to 0}{\mathop{\lim }}\,\frac{f(0-h)-f(0)}{-h}\] \[=\,\,\underset{h\to 0}{\mathop{\lim }}\,\frac{h.\frac{{{e}^{-1/h}}-{{e}^{1/h}}}{{{e}^{-1/h}}+{{e}^{1/h}}}-0}{-h}=-1\] \[R\,f'(0)=\underset{h\to 0}{\mathop{lim}}\,\frac{f(0+h)-f(0)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{h\frac{{{e}^{1/h}}-{{e}^{-1/h}}}{{{e}^{1/h}}+{{e}^{-1/h}}}}{h}=1\] \[\because \,\,\,L\,f'\,(0)\ne \,\,Rf'(0)\] \[\therefore  \,\,f\,is not differentiable at x = 0\]


You need to login to perform this action.
You will be redirected in 3 sec spinner