A) \[0\]
B) \[2\]
C) \[-1\]
D) \[-2\]
Correct Answer: C
Solution :
\[\Delta (x)=\left| \begin{matrix} {{e}^{x}} \\ \cos x \\ \end{matrix}\begin{matrix} \sin x \\ \,\,\,\,In\,(1+{{x}^{2}}) \\ \end{matrix} \right|\] |
\[{{e}^{x}}\,\,In\,\,(1+{{x}^{2}})-\sin x\,\cos x\] |
So, \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\Delta (x)}{x}=\underset{x\to 0}{\mathop{\lim }}\,\frac{{{e}^{x}}In\,(1+{{x}^{2}})-\sin x\cos x}{x}\] |
\[\underset{x\to 0}{\mathop{\lim }}\,\,\,x{{e}^{x}}\left\{ \frac{In\,(1+{{x}^{2}})}{{{x}^{2}}} \right\}-\underset{x\to 0}{\mathop{\lim }}\,\,\left( \frac{\sin x}{x} \right)\cos x\] |
\[=0\times 1\times 1-1\times 1=-1\] |
You need to login to perform this action.
You will be redirected in
3 sec