JEE Main & Advanced Sample Paper JEE Main Sample Paper-19

  • question_answer The mean of discrete observations \[{{y}_{1}},\,\,\,{{y}_{2}},\,\,\,{{y}_{3}},\,....,\,\,\,{{y}_{n}}\] is given by

    A) \[\frac{\sum\limits_{i=1}^{n}{{{y}_{i}}}}{n}\]                     

    B) \[\frac{\sum\limits_{i=1}^{n}{{{y}_{i}}}}{\sum\limits_{i=1}^{n}{i}}\]

    C) \[\frac{\sum\limits_{i=1}^{n}{{{y}_{i}}}{{f}_{i}}}{n}\]                      

    D) \[\frac{\sum\limits_{i=1}^{n}{{{y}_{i}}}{{f}_{i}}}{\sum\limits_{i=1}^{n}{{{f}_{i}}}}\]

    Correct Answer: D

    Solution :

    \[Lf'(0)=\underset{h\to {{0}^{-}}}{\mathop{Lt}}\,\frac{f(0+h)-f(0)}{h}=\underset{h\to {{0}^{-}}}{\mathop{Lt}}\,\frac{-{{h}^{2}}-0}{h}=0\] &\[Rf'(0)=\underset{h\to {{0}^{+}}}{\mathop{Lt}}\,\frac{f(0+h)-f(0)}{h}=\underset{h\to {{0}^{+}}}{\mathop{Lt}}\,\frac{+{{h}^{2}}}{h}=0\] Hence, \[f(x)\] is differentiable at\[x=0\]

adversite


You need to login to perform this action.
You will be redirected in 3 sec spinner

Free
Videos