A) 5
B) 6
C) 7
D) 8
Correct Answer: B
Solution :
Vector perpendicular to both \[\vec{n}=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\ 3 & -1 & -1 \\ 1 & 0 & 2 \\ \end{matrix} \right|\] \[=\hat{i}(-2)\,-\hat{j}(6+1)\,+\hat{k}(0+1)\] \[=-2\hat{i}-7\hat{j}+\hat{k}\] says \[2\hat{i}+7\hat{j}-\hat{k}\] Now \[\vec{V}=\overrightarrow{AB}=4\hat{i}+2\hat{j}+4\hat{k}\] Now \[S.D.\,=\left| \frac{V.n}{|n|} \right|\,=\left| \frac{18+14-4}{\sqrt{54}} \right|\,=\frac{18}{\sqrt{54}}\,=\frac{18}{3\sqrt{6}}\,=\frac{6}{\sqrt{6}}\] \[\therefore \,\,S.D=\sqrt{6}\Rightarrow \,d=6\]You need to login to perform this action.
You will be redirected in
3 sec