• # question_answer $Ph-C{{H}_{2}}-CH=C{{H}_{2}}\xrightarrow{dil.{{H}_{2}}S{{O}_{4}}}$Identify product 'X' is : A)  $Ph-C{{H}_{2}}-C{{H}_{2}}-C{{H}_{2}}-OH$ B)  $Ph-\underset{\begin{smallmatrix} | \\ H \end{smallmatrix}}{\mathop{\overset{\begin{smallmatrix} H \\ | \end{smallmatrix}}{\mathop{C}}\,}}\,-\overset{\begin{smallmatrix} H \\ | \end{smallmatrix}}{\mathop{\underset{\begin{smallmatrix} | \\ OH \end{smallmatrix}}{\mathop{C}}\,}}\,-C{{H}_{3}}$      C)  $Ph-\underset{\begin{smallmatrix} | \\ OH \end{smallmatrix}}{\mathop{\overset{\begin{smallmatrix} H \\ | \end{smallmatrix}}{\mathop{C}}\,}}\,-\overset{\begin{smallmatrix} H \\ | \end{smallmatrix}}{\mathop{\underset{\begin{smallmatrix} | \\ H \end{smallmatrix}}{\mathop{C}}\,}}\,-C{{H}_{3}}$ D)  $Ph-C{{H}_{2}}-OH$

$Ph-C{{H}_{2}}-\overset{\oplus }{\mathop{C}}\,H-C{{H}_{3}}\,\xrightarrow{1,2{{H}^{-}}\,shift}$ $Ph-\overset{\oplus }{\mathop{C}}\,H-C{{H}_{2}}-C{{H}_{3}}\,\xrightarrow{{{H}_{2}}\overset{\begin{smallmatrix} .\,\,. \\ .\,\,. \end{smallmatrix}}{\mathop{O}}\,:}$ $Ph-\underset{\begin{smallmatrix} | \\ OH \end{smallmatrix}}{\mathop{CH}}\,-C{{H}_{2}}-C{{H}_{3}}$