A) 2
B) 4
C) 7
D) 9
Correct Answer: C
Solution :
Given that, So, \[f(x)=\,\left\{ \begin{matrix} x\ln \,x, & x>0 \\ 0, & x=0 \\ \end{matrix} \right.\] So,\[f'(1)x=\frac{f(a-f)(0)}{a-0}\] ?(1) As \[f'(x)\,=\left( x.\frac{1}{x}\,+\ln \,x.1 \right)\,=1+\ln \,x\] \[f'(1)=1+\ln \,1=1\] ?(2) \[\therefore \] Using (2) in (1), we get \[1=\frac{a\ln a-0}{a}\] \[\Rightarrow \,\,\ln \,a=1\,\Rightarrow \,a=e\] \[\therefore \,\,[{{a}^{2}}]\,=[{{a}^{2}}]=7\]You need to login to perform this action.
You will be redirected in
3 sec