JEE Main & Advanced Sample Paper JEE Main Sample Paper-32

  • question_answer
    If one root  of the  quadratic  equation \[(a-b){{x}^{2}}+ax+1=0\] is double the other root where \[a\in R\], then the greatest value of b is

    A) \[\frac{7}{6}\]   

    B)                    \[\frac{8}{7}\]

    C) \[\frac{9}{8}\]   

    D)    \[\frac{10}{9}\]

    Correct Answer: C

    Solution :

    \[(a-b){{x}^{2}}+ax+1=0\left\langle _{2\alpha }^{\alpha } \right.\]                 \[3\alpha \,=\frac{-a}{a-b};2\alpha =\frac{1}{a-b}\]                 \[\therefore \,\frac{2{{a}^{2}}}{{{(a-b)}^{2}}9}=\frac{1}{a-b}\,\Rightarrow \,2{{a}^{2}}=9(a-b)\]                 \[\Rightarrow \,2{{a}^{2}}-9a+9b=0\]                 Also,\[a\,\in \,R,\]           \[\therefore \,\Delta \,\,\underline{>}\,0\Rightarrow \,81-72b\,\underline{>}\,0\Rightarrow \,b\,\underline{<}\,\frac{9}{8}.\]


You need to login to perform this action.
You will be redirected in 3 sec spinner