A) \[\frac{v{{r}_{B}}}{{{r}_{A}}\sqrt{1.2}}\]
B) \[\frac{v{{r}_{A}}}{1.2{{r}_{B}}}\]
C) \[\frac{v{{r}_{B}}}{1.2{{r}_{A}}}\]
D) \[\frac{v{{r}_{B}}}{{{r}_{B}}\sqrt{1.2}}\]
Correct Answer: A
Solution :
For two points on same orbit \[L=m{{v}_{A}}{{r}_{A}}=mv{{r}_{B}}\] \[{{v}_{A}}=\frac{v{{r}_{B}}}{{{r}_{A}}}\] For two points on different orbits. \[v=\sqrt{\frac{GM}{r}}\] \[\frac{{{v}_{0}}}{{{v}_{A}}}={{\left( \frac{{{r}_{A}}}{1.2{{r}_{A}}} \right)}^{1/2}}\] \[{{v}_{0}}={{v}_{A}}{{\left( \frac{{{r}_{A}}}{1.2{{r}_{A}}} \right)}^{1/2}}\] \[=\frac{v{{r}_{B}}}{{{r}_{A}}\sqrt{1.2}}\]You need to login to perform this action.
You will be redirected in
3 sec