JEE Main & Advanced Sample Paper JEE Main Sample Paper-38

  • question_answer
    Let \[{{z}_{1}}\] and \[{{z}_{2}}\] be complex number such that\[|{{z}_{1}}+{{z}_{2}}|\,\,=\,\,|{{z}_{1}}|+|{{z}_{2}}|\]
    Statement-1:\[\arg \left( \frac{{{z}_{1}}}{{{z}_{2}}} \right)=0\]
    Statement-2: \[{{z}_{1}},\,\,{{z}_{2}}\]and origin are collinear and \[{{z}_{1}},\,\,{{z}_{2}}\] are on the same side of origin.

    A)  Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

    B)  Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.

    C)  Statement-1 is true, Statement-2 is false.

    D)  Statement-1 is false, Statement-2 is true.

    Correct Answer: A

    Solution :

    \[\arg ({{z}_{1}})=\arg ({{z}_{2}})\] \[\therefore \]\[\arg \left( \frac{{{z}_{1}}}{{{z}_{2}}} \right)=\arg ({{z}_{1}})-\arg ({{z}_{2}})=0\]

adversite


You need to login to perform this action.
You will be redirected in 3 sec spinner

Free
Videos