A) \[{{K}_{1}}+{{K}_{2}}\]
B) \[{{K}_{1}}{{K}_{2}}/({{K}_{1}}+{{K}_{2}})\]
C) \[({{K}_{1}}+3{{K}_{2}})/4\]
D) \[(3{{K}_{1}}+{{K}_{2}})/4\]
Correct Answer: C
Solution :
Heat flowing per sec. through cylinder of radius R, \[{{Q}_{1}}={{K}_{1}}(\pi {{R}^{2}})\left( \frac{{{T}_{1}}-{{T}_{2}}}{l} \right)\] Heat flowing per sec through outer shell of radius 2R, \[{{Q}_{2}}={{K}_{2}}(\pi {{(2R)}^{2}}-\pi {{R}^{2}})\left( \frac{{{T}_{1}}-{{T}_{2}}}{l} \right)\] Total\[Q={{Q}_{1}}+{{Q}_{2}}=({{K}_{1}}+3{{K}_{2}})\pi {{R}^{2}}\left( \frac{{{T}_{1}}-{{T}_{2}}}{l} \right)\]?(1) Let K be the equivalent thermal conductivity of the system. Then \[Q=K\pi {{(2R)}^{2}}\left( \frac{{{T}_{1}}-{{T}_{2}}}{l} \right)\] ....(2) From eqs. (1) and (2), we have \[({{K}_{1}}+3{{K}_{2}})=4K\]or\[K=\frac{{{K}_{1}}+3{{K}_{2}}}{4}\]You need to login to perform this action.
You will be redirected in
3 sec