JEE Main & Advanced Sample Paper JEE Main Sample Paper-3

  • question_answer
    If the function \[f(x)=P{{e}^{2x}}+Q{{e}^{x}}+Rx\]satisfies the conditions \[f(0)=-1,\,\,f'(\log 2)=31\]and\[\int_{0}^{\log \,4}{(f(x)-Rx)dx=\frac{39}{2}},\]then

    A)  \[P=5,Q=-6,R=3\]           

    B)  \[P=-5,Q=6,R=3\]

    C)  \[P=-5,Q=6,R=3\]  

    D)  \[P=3,Q=2,R=3\]

    Correct Answer: A

    Solution :

     \[f'(x)=P{{e}^{2x}}+Q{{e}^{x}}+Rx\] \[\Rightarrow \]\[f'(x)=2P{{e}^{2x}}+Q{{e}^{x}}+R\] \[\Rightarrow \]\[31=2P{{e}^{2\log 2}}+Q{{e}^{\log 2}}+R\] \[\Rightarrow \]\[8P+2Q+R=31\]                                              ?(i) Also, \[0=P+Q\]                                                                ?(ii) \[\And \int_{0}^{\log 4}{(f(x)-Rx)dx}=\frac{39}{2}\] \[\Rightarrow \]\[\int_{0}^{\log 4}{(P{{e}^{2x}}+Q{{e}^{x}})dx}=\frac{39}{2}\] \[\Rightarrow \]\[\left[ \frac{P}{2}{{e}^{2x}}+Q{{e}^{x}} \right]_{0}^{\log 4}=\frac{39}{2}\] \[\Rightarrow \]\[\frac{P}{2}{{e}^{2\log 4}}+Q{{e}^{\log 4}}-\frac{P}{2}-Q=\frac{39}{2}\] \[\Rightarrow \]\[15P+6Q=39\]                                 ?(iii) Solving (i), (ii) and (iii), we get \[P=5,Q=-6,R=3\]


You need to login to perform this action.
You will be redirected in 3 sec spinner