A) \[\frac{{{a}^{2}}}{3}(6\pi -4)\]
B) \[\frac{{{a}^{2}}}{3}(4\pi +3)\]
C) \[\frac{{{a}^{2}}}{3}(8\pi +3)\]
D) none of these
Correct Answer: A
Solution :
The curve of y (x2 + 4a2) = 8a3 is symmetrical about y-axis and cuts it at A (0,2a). Tangent at A is parallel to x-axis. x-axis is asymptote. This curve meets x2 = 4ay Where, \[\frac{{{x}^{2}}}{4a}=\frac{8{{a}^{3}}}{{{x}^{2}}+4{{a}^{2}}}\Rightarrow {{x}^{4}}+4{{a}^{2}}{{x}^{2}}-32{{a}^{4}}=0\] \[\Rightarrow \]\[({{x}^{2}}-4{{a}^{2}})({{x}^{2}}+8{{a}^{2}})=0\Rightarrow x=\pm 2a\] \[\therefore \]Required area \[=2\left[ \int_{0}^{2a}{\frac{8{{a}^{3}}}{{{x}^{2}}+4{{a}^{2}}}dx-\int_{0}^{2a}{\frac{{{x}^{2}}}{4a}}dx} \right]\] \[=\frac{{{a}^{2}}}{3}(6\pi -4).\]You need to login to perform this action.
You will be redirected in
3 sec