Statement 1: The determinant of a matrix\[\left| \begin{matrix} 0 & p-q & p-r \\ q-p & 0 & q-r \\ r-p & r-q & 0 \\ \end{matrix} \right|\]is zero. |
Statement 2: The determinant of a skew symmetric matrix of odd order is zero. |
A) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
B) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
C) Statement-1 is true, Statement-2 is false.
D) Statement-1 is false, Statement-2 is true.
Correct Answer: A
Solution :
The determinant of a skew symmetric matrix of odd order is zero i.e., \[|A|=|-{{A}^{T}}|\Rightarrow |A|=-|A|\Rightarrow 2|A|=0\Rightarrow |A|=0\]You need to login to perform this action.
You will be redirected in
3 sec