A) 0
B) 1
C) -1
D) None
Correct Answer: C
Solution :
\[\left| \begin{matrix} a & {{a}^{2}} & 1+{{a}^{3}} \\ b & {{b}^{2}} & 1+{{b}^{3}} \\ c & {{c}^{2}} & 1+{{c}^{3}} \\ \end{matrix} \right|\] \[=(1+abc)(a-b)(b-c)(c-a)=0\] ?(1) also, \[\left| \begin{matrix} 1 & a & {{a}^{2}} \\ 1 & b & {{b}^{2}} \\ 1 & c & {{c}^{2}} \\ \end{matrix} \right|\ne 0,\] since A, B, C are not coplanar \[=(a-b)(b-c)(c-a)\ne 0\] ?(2) From (1) & (2), abc = - 1You need to login to perform this action.
You will be redirected in
3 sec