• question_answer If (m3 - 3) x2 + 3mx + 3m +1=0 has roots which  are reciprocal of each other, then the value of m can be A)  4                                             B)  1                     C)  2                                             D)  None of these

Idea Here, ax2 + bx + c = 0 has roots $\alpha$ and $\beta$$\alpha +\beta =\frac{-b}{a},\alpha \beta =\frac{c}{a}$ If roots are reciprocal to each other i.e., $\alpha ={{\alpha }_{1}}$$\beta =\frac{1}{a}\Rightarrow \frac{c}{a}=1\Rightarrow c=a$ We have given the equation as $({{m}^{2}}-3){{x}^{2}}+3mx+3m+1=0$ $\because$Roots are reciprocal to each other $\therefore$                  $\alpha \beta =1$ $\Rightarrow$               $\frac{c}{a}=1\Rightarrow \frac{3m+1}{{{m}^{2}}-3}=1$ $\Rightarrow$               $3m+1={{m}^{2}}-3$ $\Rightarrow$               ${{m}^{2}}-3m-4=0$ $\Rightarrow$               ${{m}^{2}}-4m+m-4=0$ $\Rightarrow$               $m(m-4)+1(m-4)=0$ $\Rightarrow$               $(m-4)(m+1)=0$ $\Rightarrow$               $m=4,-1$ TEST Edge Application of quadratic equation based questions are asked. To solve such type of question, students are advised to understand the concept of quadratic equation.
You will be redirected in 3 sec 