KVPY Sample Paper KVPY Stream-SX Model Paper-10

  • question_answer
    Particle deaccelerates on a straight line whose magnitude is \[|a|=\alpha \sqrt{v},\]where \[\alpha =a\] positive constant. If initial velocity of the particle is \[{{v}_{0}},\] then the distance travelled by particle before it stops is

    A) \[\frac{2v_{0}^{3/2}}{3\alpha }\]

    B) \[\frac{3v_{0}^{3/2}}{2\alpha }\]

    C) \[\frac{v_{0}^{3/2}}{\alpha }\]                        

    D) \[\frac{2{{\alpha }^{3}}}{3{{v}_{0}}}\]

    Correct Answer: A

    Solution :

    \[a=\frac{dv}{dt}=-\alpha \sqrt{v}\]
    \[\Rightarrow \]\[\int_{{{v}_{0}}}^{v}{\frac{dv}{\sqrt{v}}}=-\alpha \int_{{{t}_{0}}=0}^{t}{dt}\]
    (here, to is initial time)
    \[\Rightarrow \]\[v={{\left( \sqrt{{{v}_{0}}}-\frac{\alpha t}{2} \right)}^{2}}={{v}_{0}}-\alpha \sqrt{{{v}_{0}}}.t+\frac{{{\alpha }^{2}}+{{t}^{2}}}{4}\]
    \[\Rightarrow \]\[\frac{dx}{dt}={{v}_{0}}-\alpha \sqrt{{{v}_{0}}t}+\frac{{{\alpha }^{2}}{{t}^{2}}}{4}\]
    Integrating
    \[\Rightarrow \]\[x={{v}_{0}}t-\frac{\alpha \sqrt{{{v}_{0}}}{{t}^{2}}}{2}+\frac{{{\alpha }^{2}}{{t}^{3}}}{12}\]
    Particle stops, when \[v=0\]
    \[\Rightarrow \]\[\sqrt{{{v}_{0}}}-\frac{\alpha {{t}_{0}}}{2}=0\]
    \[\Rightarrow \]\[{{t}_{0}}=\frac{2\sqrt{{{v}_{0}}}}{\alpha }\]
    Substituting in Eq, (i), we get
    \[x={{v}_{0}}\times \frac{2\sqrt{{{v}_{0}}}}{\alpha }-\frac{\alpha \sqrt{{{v}_{0}}}}{2}\times \frac{4{{v}_{0}}}{{{\alpha }^{2}}}+\frac{{{\alpha }^{2}}}{12}\times \frac{8v_{0}^{3/2}}{{{\alpha }^{3}}}\]
    \[\Rightarrow \]\[x=\frac{2v_{0}^{3/2}}{3\alpha }\]                   


You need to login to perform this action.
You will be redirected in 3 sec spinner