KVPY Sample Paper KVPY Stream-SX Model Paper-11

  • question_answer
    An artificial satellite of the moon revolves in a circular orbit whose radius exceeds the radius of the moon \[\eta \] times. The process of motion the satellite experiences a slight resistance due to cosmic dust. Assuming the resistance force to depend on the velocity of the satellite as \[F=\alpha {{\nu }^{2,}}\] where \[\alpha \]is a constant, find how long the satellite will stay in orbit until it falls onto the moon?s surface  

    A) \[\frac{1}{\alpha }\frac{\left[ \sqrt{\eta R}-\sqrt{R} \right]}{\sqrt{GM}}\]    

    B) \[\frac{1}{\alpha }\frac{\left[ \sqrt{\eta R}-\sqrt{R} \right]}{M}\]

    C) \[\frac{m}{\alpha }\frac{\left[ \sqrt{\eta R}-\sqrt{R} \right]}{\sqrt{GM}}\]   

    D) \[\frac{m}{\alpha }\frac{\left[ \sqrt{\eta R}-\sqrt{R} \right]}{\sqrt{GM}}\]

    Correct Answer: C

    Solution :

    The energy of the satellite in a  orbit of radius r,\[E=\frac{-GMm}{2r}.\]
    Here m is the mass of satellite and M is the mass of the moon. If \[dE/dt\]is the instantaneous rate of decrease of energy of the satellite, then we have\[\left( \frac{dE}{dt} \right)=Fv\]
    Given F=\[\alpha {{v}^{2}}\]
    \[\therefore \frac{d\left[ \frac{-GMm}{2r} \right]}{dt}=(\alpha {{v}^{2}})v\]
    Or \[\frac{GMm}{2{{r}^{2}}}dr=-\alpha {{v}^{3}}dt\]
    Orbital velocity of satellite,\[v=\sqrt{\frac{CM}{r}}.\]
    \[\therefore \frac{GMm}{2{{r}^{2}}}dr=-\alpha {{\left[ \frac{GM}{r} \right]}^{3/2}}dt\]
    \[\frac{m{{r}^{1/2}}}{2}dr=-\alpha {{(GM)}^{1/2}}dt\]
    Integrating above expression, we get \[\frac{m}{2}\int\limits_{\eta R}^{R}{{{r}^{-1/2}}dr=-\alpha {{(GM)}^{1/2}}\int\limits_{0}^{t}{dt}}\]
    \[m\left| \sqrt{r} \right|_{\eta R}^{R}=-\alpha \sqrt{GM}t\]
    Or \[m\left[ \sqrt{\eta R}-\sqrt{R} \right]=\alpha \sqrt{Gm}\,t\]
    \[\therefore t=\frac{m}{\alpha }\frac{\sqrt{\eta R}-\sqrt{R}}{\sqrt{GM}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner