KVPY Sample Paper KVPY Stream-SX Model Paper-13

  • question_answer
    The value of \[\underset{n\to \infty }{\mathop{\lim }}\,{{n}^{2}}\int_{-1/n}^{1/n}{(2018\sin x+2019\cos x)|x|}\,dx\]

    A) 0

    B) 1     

    C) 2018                

    D) 2019

    Correct Answer: D

    Solution :

    Let \[L=\underset{n\to \infty }{\mathop{\lim }}\,{{n}^{2}}\int_{-1/n}^{1/n}{(2018\sin x+2019\cos x)|x|dx}\]
    \[L=\underset{n\to \infty }{\mathop{\lim }}\,\frac{2\int_{0}^{1/n}{2019\cos x|x|dx}}{\frac{1}{{{n}^{2}}}}\]
    \[[\because 2018\sin x|x|\text{is}\,\text{odd}\,\text{function }\!\!]\!\!\text{ }\]
    \[\Rightarrow \]\[L=\underset{n\to \infty }{\mathop{\lim }}\,\frac{2\cdot 2019\cos \left( \frac{1}{n} \right)\left( \frac{1}{n} \right)\times \left( \frac{-1}{{{n}^{2}}} \right)}{\frac{-\,2}{{{n}^{3}}}}\]
    [\[\because \]by Leibnitz rule]
    \[\Rightarrow \]\[L=\underset{n\to \infty }{\mathop{\lim }}\,2019\cos \left( \frac{1}{n} \right)=2019\]


You need to login to perform this action.
You will be redirected in 3 sec spinner