A) 666
B) 667
C) 668
D) 669
Correct Answer: C
Solution :
\[{{a}_{1}}=1\] |
\[3{{a}_{n+1}}-3{{a}_{n}}=1\] |
\[{{a}_{n+1}}=\frac{3{{a}_{n}}+1}{3}={{a}_{n}}+\frac{1}{3},\] |
\[{{a}_{2}}={{a}_{1}}+\frac{1}{3}=1+\frac{1}{3}\] |
\[{{a}_{3}}={{a}_{2}}+\frac{1}{3}={{a}_{1}}+\frac{1}{3}+\frac{1}{3}=1+\frac{2}{3}\] |
\[{{a}_{4}}={{a}_{3}}+\frac{1}{3}=1+\frac{2}{3}+\frac{1}{3}=1+\frac{3}{3}\] |
?. ??? ???? ??.. |
?. ??? ???? ??.. |
\[{{a}_{2002}}=1+\frac{2001}{3}=1+667=668\] |
You need to login to perform this action.
You will be redirected in
3 sec