A) 862
B) 863
C) 868
D) 866
Correct Answer: D
Solution :
\[{{(x+y+z)}^{2}}=144\] |
\[\therefore \sum{{{x}^{2}}+2\sum{x}y=144}\] |
\[\Rightarrow \sum{xy=24}\] |
\[\frac{\sum{xy}}{xyz}=36\] |
\[\Rightarrow xyz=\frac{2}{3}\] |
\[\therefore {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=(x+y+z)\,\,(\sum{{{x}^{2}}-\sum{xy)}}\] |
\[\therefore \sum{{{x}^{3}}-2=12\,\,(96-24)}\] |
\[\Rightarrow \sum{{{x}^{3}}=866}\] |
You need to login to perform this action.
You will be redirected in
3 sec