Three glass cylinders of equal height \[H=30cm\] and me refractive index \[n=1.5\] are placed on a horizontal surface as shown in figure. Cylinder I has a flat top, cylinder II has a convex top and cylinder III has a concave top. The radii of curvature of the two curved tops are same \[(R=3m).\] If \[{{\text{H}}_{\text{1}}}\text{,}\]\[{{\text{H}}_{2}}\] and \[{{\text{H}}_{\text{3}}}\] are the apparent depths of a point X on the bottom of the three cylinder, respectively, the correct statement(s) is/ are: |
A) \[{{\text{H}}_{\text{3}}}\,>\,{{\text{H}}_{\text{1}}}\]
B) \[0.8\,\text{cm}\,<\,({{H}_{2}}-{{H}_{1}})\,<\,0.9\,\text{cm}\]
C) \[{{\text{H}}_{\text{2}}}\,\text{}\,{{\text{H}}_{\text{1}}}\]
D) \[{{\text{H}}_{\text{2}}}\,\text{}\,{{\text{H}}_{\text{3}}}\]
Correct Answer: C , D
Solution :
\[\frac{d'}{d}=\frac{{{n}^{2}}}{{{n}_{1}}}\] |
\[\Rightarrow \] \[\frac{d'}{30}=\frac{1}{\text{3/2}}\] |
\[\Rightarrow \] \[{{d}^{'}}=20\,\text{cm}\] |
\[{{n}_{1}}=1\] |
\[\frac{1}{v}+\frac{1.5}{30}=\frac{(1-1.5)}{-\,300}\] |
\[\Rightarrow \] \[\frac{1}{v}=+\frac{1}{600}-\frac{3}{60}=\frac{1-30}{600}\] |
\[\Rightarrow \] \[\frac{1}{v}=\,-\,\frac{29}{600}\,\] |
\[\Rightarrow \] \[\frac{1}{v}=\,-\,\frac{600}{29}\,=\,-20.68\,\text{cm}\] |
\[{{n}_{1}}=1\] |
\[\frac{1}{v}=\frac{1.5}{-30}=\frac{1-1.5}{300}\] |
\[\Rightarrow \] \[\frac{1}{v}=\frac{-1}{600}-\frac{3}{60}=\frac{-1-30}{600}\,=\,\frac{-\,31}{600}\] |
\[\Rightarrow \] \[v=-\frac{600}{31}=-\,19.35.\] |
Solution :
Same as aboveYou need to login to perform this action.
You will be redirected in
3 sec