KVPY Sample Paper KVPY Stream-SX Model Paper-18

  • question_answer
    Let \[f\left( x \right)={{\sin }^{3}}x+\lambda {{\sin }^{2}}x,-\frac{\pi }{2}<x<\frac{\pi }{2}\] in order that \[f\left( x \right)\] has exactly one minimum, \[\lambda \] should belong to

    A) \[\left( -1,1 \right)\]

    B) \[\left( -\frac{3}{2},0 \right)\cup \left( 0,\frac{3}{2} \right)\]

    C) \[\left( 0,\infty  \right)\]

    D) \[\left( -\frac{3}{2},-\frac{1}{2} \right)\cup \left( \frac{1}{2},\frac{3}{2} \right)\]

    Correct Answer: B

    Solution :

    \[f'\left( x \right)=\sin x\cos x\left( 3\sin x+2\lambda  \right)\]
    For maximum and minimum \[f'\left( x \right)=0\Rightarrow \sin x=0\] or \[\cos x=0\] or \[\sin x=-\frac{2\lambda }{3}\]
    \[\therefore \]critical points in \[\left( -\frac{\pi }{2},\frac{\pi }{2} \right)\]are \[x=0,\]\[{{\sin }^{-1}}\left( -\frac{2\lambda }{3} \right)\]
    One of these is point of minima and other is point of maxima, provided\[-1<-\frac{2\lambda }{3}<1\]\[\Rightarrow -\frac{3}{2}<\lambda <\frac{3}{2}\]
    But if \[\lambda =0\], then \[\sin x=0\]which gives only one critical points
    \[\therefore \lambda \in \left( -\frac{3}{2},\frac{3}{2} \right)-\{0\}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner