KVPY Sample Paper KVPY Stream-SX Model Paper-19

  • question_answer
    A bullet looses \[{{\left( \frac{1}{n} \right)}^{\operatorname{th}}}\] of its velocity passing through one plank. The number of such planks that are required to stop the bullet can be:

    A) \[\frac{{{n}^{2}}}{2n-1}\]

    B) \[\frac{2{{n}^{2}}}{n-1}\]

    C) Infinite

    D) n

    Correct Answer: A

    Solution :

    Let u be initial velocity of the bullet of mass m. After passing through a plank of width x, its velocity decreases to v.
    \[\therefore \]      \[u-v=\frac{4}{n}or,v=u-\frac{4}{n}=\frac{u(n-1)}{n}\]
    If F be the retarding force applied by each plank, then using work - energy theorem,
    \[\operatorname{Fx}=\frac{1}{2}m{{u}^{2}}-\frac{1}{2}m{{v}^{2}}\]\[=\frac{1}{2}m{{u}^{2}}-\frac{1}{2}m{{u}^{2}}\frac{{{(n-1)}^{2}}}{{{n}^{2}}}\]\[=\frac{1}{2}m{{u}^{2}}\left[ \frac{1-{{(n-1)}^{2}}}{{{n}^{2}}} \right]\]
    \[Fx=\frac{1}{2}m{{u}^{2}}\left( \frac{2n-1}{{{n}^{2}}} \right)\]
    Let P be the number of plank required to stop the bullet.
    Total distance travelled by the bullet before coming to rest = Px
    Using work-energy theorem again,
    \[F\left( Px \right)=\frac{1}{2}m{{u}^{2}}-0\]
    Or,        \[P(Fx)=P\left[ \frac{1}{2}m{{u}^{2}}\frac{(2n-1)}{{{n}^{2}}} \right]=\frac{1}{2}m{{u}^{2}}\]
    \[\therefore \]      \[P=\frac{{{n}^{2}}}{2n-1}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner