KVPY Sample Paper KVPY Stream-SX Model Paper-22

  • question_answer
    Number of possible ordered pair(s) (a, b) for each of which the equality, \[a\,(\cos x-1)+{{b}^{2}}=\cos \,(ax+{{b}^{2}})-1\] holds true for all \[x\in R\] are:

    A) 0

    B) 1

    C) 2

    D)  infinite

    Correct Answer: C

    Solution :

    Put \[x=0\] \[{{b}^{2}}=\cos \] \[{{b}^{2}}-1\] or \[\cos {{b}^{2}}=1+{{b}^{2}}\]\[\Rightarrow \]\[b=0\]
    Now the equation becomes \[-\,2\,\,a{{\sin }^{2}}\frac{x}{2}=\cos a\,x-1=-\,2{{\sin }^{2}}\frac{ax}{2}\]
    or \[a{{\sin }^{2}}\frac{x}{2}={{\sin }^{2}}\frac{ax}{2}\] must be true \[\forall \,\,x\in R\]\[\Rightarrow \]\[a=0\] or \[a=1\]

You need to login to perform this action.
You will be redirected in 3 sec spinner