KVPY Sample Paper KVPY Stream-SX Model Paper-25

  • question_answer
    If \[\int\limits_{0}^{\pi /2}{\frac{dx}{{{a}^{2}}{{\cos }^{2}}x+{{b}^{2}}{{\sin }^{2}}x}=\frac{\pi }{16}.}\] Then minimum value of \[a\cos x+b\sin \text{ }x\] is

    A) \[-4\]

    B) \[-8\]

    C) \[-2\]

    D) \[-2\sqrt{2}\]

    Correct Answer: A

    Solution :

    \[\int\limits_{0}^{\pi /2}{\frac{dx}{{{a}^{2}}{{\cos }^{2}}x+{{b}^{2}}{{\sin }^{2}}x}}\]\[=\int\limits_{0}^{\pi /2}{\frac{{{\sec }^{2}}xdx}{{{b}^{2}}{{\tan }^{2}}x+{{a}^{2}}}}\]
    \[=\frac{1}{{{b}^{2}}}\int\limits_{0}^{\pi /2}{\frac{{{\sec }^{2}}xdx}{{{\tan }^{2}}x+{{\left( \frac{a}{b} \right)}^{2}}}}\]
    \[=\frac{1}{{{b}^{2}}}\int\limits_{0}^{\infty }{\frac{dt}{{{t}^{2}}+{{\left( \frac{a}{b} \right)}^{2}}}}\]                   (Putting tan\[x=t\])
    \[=\left. \frac{1}{{{b}^{2}}}\times \frac{b}{a}{{\tan }^{-1}}\frac{bt}{a} \right|_{0}^{\infty }\,\,\,\,=\frac{1}{ab}\left( \frac{\pi }{2} \right)=\frac{\pi }{2ab}\]Thus \[a\frac{\pi }{2ab}=\frac{\pi }{16}\Rightarrow ab=8\]Now minimum value of \[a\cos x+b\sin x\]is
    \[-\sqrt{{{a}^{2}}+{{b}^{2}}},\]which is least if \[a=b\]
    \[=2\sqrt{2}\Rightarrow -\sqrt{{{a}^{2}}+{{b}^{2}}}\ge -\sqrt{8+8}=-4\]


You need to login to perform this action.
You will be redirected in 3 sec spinner