KVPY Sample Paper KVPY Stream-SX Model Paper-3

  • question_answer
    Let \[\left| \!{\overline {\,  {} \,}} \right. \]denotes a curve \[y=y(x)\] which is in the first quadrant and let the point (1, 0) lie on it. Let the tangent to \[\left| \!{\overline {\,  {} \,}} \right. \]at a point P intersect the v-axis at \[{{\text{Y}}_{{{\text{p}}^{\text{.}}}}}\]. If \[\text{P}{{\text{Y}}_{\text{p}}}\] has length 1 for each point P on \[\left| \!{\overline {\,  {} \,}} \right. \], then which of the following options is/are correct?

    A) \[xy'-\,\sqrt{1-{{x}^{2}}}=\,0\]

    B) \[y\,=\,-\,\text{lo}{{\text{g}}_{e}}\,\left( \frac{1+\sqrt{1-{{x}^{2}}}}{x} \right)+\,\sqrt{1-{{x}^{2}}}\]

    C) \[xy'+\sqrt{1-{{x}^{2}}}=\,0\]

    D) \[y\,=\,\text{lo}{{\text{g}}_{e}}\,\left( \frac{1+\sqrt{1\,\,-\,{{x}^{2}}}}{x} \right)-\,\sqrt{1-{{x}^{2}}}\]

    Correct Answer: C , D

    Solution :

    Equation of Tangent at P
    \[y-y=\frac{dy}{dx}\,(X-x)\]
    For \[{{\text{Y}}_{p}}\]\[\Rightarrow \]\[(X=0)\]
    \[{{Y}_{p}}=y-x\frac{dy}{dx}\]
    Distance \[{{\text{Y}}_{\text{p}}}\text{P=1}\]
    \[{{x}^{2}}+{{\left( y-y+x\frac{dy}{dx} \right)}^{2}}=1\]
    \[{{x}^{2}}\left( 1+{{\left( \frac{dy}{dx} \right)}^{2}} \right)\,=\,1\]
    \[{{\left( \frac{dy}{dx} \right)}^{2}}=\frac{1}{{{x}^{2}}}-1\]
    \[\frac{dy}{dx}=\pm \frac{\sqrt{1-x}}{x}\to \]option A and C
    \[\int{dy}=\pm \int{\frac{\sqrt{1-{{x}^{2}}}}{x}dx}\]
    \[x=\text{sin}\theta \]
    \[y=\pm \int{\frac{\cos \theta }{\sin \theta }}\cos \theta d\theta \]
    \[y=\pm \int{\frac{1-{{\sin }^{2}}\theta }{\sin \theta }}d\theta \]
    \[y=\pm \int{(cosec\theta -sin\theta )d\theta }\]
    \[y=\pm (In\left| \cos ec\theta +\cot \theta \left| +\cos \theta  \right. \right.)+\text{C}\]
    P as (1, 0) \[\Rightarrow \]\[C=0\]
    \[y=\pm \left( \text{In}\left( \frac{1+\sqrt{1-{{x}^{2}}}}{x} \right) \right)+\sqrt{1-{{x}^{2}}}\]
    \[\to \]option [b], [d],

    Solution :

    Same as Above


You need to login to perform this action.
You will be redirected in 3 sec spinner