KVPY Sample Paper KVPY Stream-SX Model Paper-7

  • question_answer
    Let \[n\ge 2\] be a natural number and \[0<\theta <\pi \text{/2}.\] Then \[\int{\frac{{{\left( {{\sin }^{n}}\theta -\sin \theta  \right)}^{\frac{1}{n}}}\cos \theta }{{{\sin }^{n+1}}\theta }d\theta }\] is equal to: (where C is a constant of integration)

    A) \[\frac{n}{{{n}^{2}}-1}{{\left( 1-\frac{1}{{{\sin }^{n-1}}\theta } \right)}^{\frac{n+1}{n}}}+C\]

    B)  \[\frac{n}{{{n}^{2}}+1}{{\left( 1-\frac{1}{{{\sin }^{n-1}}\theta } \right)}^{\frac{n+1}{n}}}+C\]

    C) \[\frac{n}{{{n}^{2}}-1}{{\left( 1+\frac{1}{{{\sin }^{n-1}}\theta } \right)}^{\frac{n+1}{n}}}+C\]

    D) \[\frac{n}{{{n}^{2}}-1}{{\left( 1-\frac{1}{{{\sin }^{n+1}}\theta } \right)}^{\frac{n+1}{n}}}+C\]

    Correct Answer: A

    Solution :

    \[\int_{{}}^{{}}{\frac{{{\left( {{\sin }^{n}}\theta -\sin \theta  \right)}^{\frac{1}{n}}}\cos \theta }{{{\sin }^{n+1}}\theta }}d\theta \]
    \[\int_{{}}^{{}}{\frac{{{\left( {{t}^{n}}-t \right)}^{n}}dt}{{{t}^{n+1}}}}\]  (put\[\sin \theta =t\])
    \[\int_{{}}^{{}}{\frac{t{{\left( 1-\frac{1}{{{t}^{n-1}}} \right)}^{\frac{1}{n}}}}{{{t}^{n+1}}}}dt=\int_{{}}^{{}}{\frac{{{\left( 1-\frac{1}{{{t}^{n-1}}} \right)}^{\frac{1}{n}}}}{{{t}^{n}}}}dt\]
    Put, \[1-\frac{1}{{{t}^{n-1}}}=z\]
    \[\Rightarrow \]   \[\frac{(n-1)}{{{t}^{n}}}dt=dz,\]
    \[\Rightarrow \]   \[I=\frac{1}{n-1}\int_{{}}^{{}}{{{z}^{\frac{1}{n}}}dz}\]\[=\frac{{{z}^{\frac{1}{n}+1}}}{\left( \frac{1}{n}+1 \right)(n-1)}+c=\frac{n{{(1-{{t}^{1-n}})}^{n+1}}}{{{n}^{2}}-1}+c\]
    \[=\frac{n}{{{n}^{2}}-1}{{\left( 1-\frac{1}{{{\sin }^{n-1}}\theta } \right)}^{\frac{n+1}{n}}}+c.\]


You need to login to perform this action.
You will be redirected in 3 sec spinner