KVPY Sample Paper KVPY Stream-SX Model Paper-8

  • question_answer
    A bimetallic strip is formed out of two identical strips, one of copper and the other of brass. The Coefficients of linear expansions of two metals are \[{{\alpha }_{C}}\] and \[{{\alpha }_{B}}\] On heating, the temperature of the strip goes up by \[\Delta T\] and the strip bends to form an arc of radius \[R\] Find \[R\]

    A) \[t/\left( {{\alpha }_{B}}+{{\alpha }_{C}} \right)\Delta t\]

    B) \[\Delta t/\left( {{\alpha }_{B}}+{{\alpha }_{C}} \right)t\]

    C) \[t/\left( {{\alpha }_{B}}-{{\alpha }_{C}} \right)\Delta t\] 

    D) \[\frac{\left( {{\alpha }_{B}}-{{\alpha }_{C}} \right)t}{\Delta t}\]

    Correct Answer: C

    Solution :

    Let \[{{\ell }_{0}}\] be the length and \[t\]the thickness of each strip. On heating, length of brass rod \[{{\ell }_{1}}={{\ell }_{2}}\left( 1+{{\alpha }_{B}}\Delta T \right)\]
    By the geometry of the figure, we have
    \[{{\ell }_{1}}={{R}_{1}}\theta \]
        \[=\left( R+\frac{1}{2} \right)\theta \]
    \[\therefore \left( R+\frac{1}{2} \right)\theta ={{\ell }_{0}}\left( 1+{{\alpha }_{B}}\Delta T \right)..(i)\]
    Similarly for copper strip, \[{{\ell }_{2}}={{\ell }_{0}}\left( 1+{{\alpha }_{C}}t \right)={{R}_{2}}\theta \]
    or \[\left( R-\frac{1}{2} \right)\theta ={{\ell }_{0}}\left( 1+{{\alpha }_{C}}T \right)..(ii)\]
    Dividing equation (i) by (ii), we get \[\Rightarrow \frac{\left( R+\frac{1}{2} \right)}{\left( R-\frac{1}{2} \right)}=\frac{1+{{\alpha }_{B}}\Delta T}{1+{{\alpha }_{C}}\Delta T}\]
    \[\Rightarrow \left( R+\frac{t}{2} \right)\left( 1+{{\alpha }_{C}}\Delta T \right)\]
    \[=\left( R-\frac{t}{2} \right)\left( 1+{{\alpha }_{B}}\Delta T \right)\]
    \[\Rightarrow R+R{{\alpha }_{C}}\Delta T+\frac{t}{2}+\frac{t}{2}{{\alpha }_{C}}\Delta T\]
    \[=R+R{{\alpha }_{B}}\Delta T-\frac{t}{2}-\frac{t}{2}{{\alpha }_{B}}\Delta T\]
    If \[\Delta T\]is small, \[\alpha \] is still small, so we can neglect their product. And, therefore, we have \[R{{\alpha }_{B}}\Delta T-R{{\alpha }_{C}}\Delta T=t\]
    Or \[R=\frac{t}{\left( {{\alpha }_{B}}-{{\alpha }_{C}} \right)\Delta T.}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner