12th Class Mathematics Sample Paper Mathematics Sample Paper-11

  • question_answer
    Consider \[f:{{R}^{+}}\to [-\,9,\,\,\infty ]\] given   by \[f(x)=5{{x}^{2}}+6x-9.\] Prove that f is invertible with \[{{f}^{-1}}(y)=\left( \frac{\sqrt{54+5y}-3}{5} \right)\]
    (Where, \[{{R}^{+}}\] is the set of all positive real numbers).
    OR
    Let '*' be a binary operation on the set
    {0, 1, 2, 3, 4, 5} defined as
    \[a*b=\left\{ \begin{matrix}    a+b, & \text{if}\,\,a+b<6  \\    a+b-6, & \text{if}\,\,a+b\ge 6  \\ \end{matrix} \right.\]
    Show that zero is the identity for this operation and each element a of the set is invertible with \[b-a,\] being the inverse of a.

    Answer:

    \[f:{{R}^{+}}\to [-\,9,\,\,\infty ]\]
    \[f(x)=5{{x}^{2}}+6x-9\]
    \[f'(x)=10x+6\]     [domain of \[f(x)\] in \[{{R}_{+}}\]]
    \[\therefore \]      \[x>0,\]\[f'(x)>0,\] hence the function is increasing and we know increasing function is one-one.
    \[\therefore \]\[f(x)\] is one-one
    Range of function
    \[\therefore \]Function is increasing in\[[0,\,\,\infty ]\].
    \[\therefore \]Lowest value of function will be at\[x=0\].
    \[\therefore \]\[f(x)=0+0-9=-\,9\]
                \[\therefore \]Range for \[{{R}_{+}}\]is \[[-\,9,\,\,\infty )\].
                \[\therefore \]\[[-\,\,9,\,\,\infty )\] is codomain of given function.
                \[\therefore \]Hence range = codomain
                \[\therefore \]Function is onto.
                Hence, the given function is invertible.
                Now, \[f(x)=5{{x}^{2}}+6x-9\]
    \[y=5\left( {{x}^{2}}+\frac{6x}{5}-\frac{9}{5} \right)\] \[[let\,f(x)=y]\]
    \[=5\left( {{x}^{2}}+2x\frac{3}{5}+\frac{9}{25}-\frac{9}{5}-\frac{9}{25} \right)\]
    \[\left[ \text{adding}\,\,\text{and}\,\,\text{subtracting}\frac{9}{25} \right]\]
    \[=5\left[ {{x}^{2}}+2x\frac{3}{5}+{{\left( \frac{3}{5} \right)}^{2}}-\frac{54}{25} \right]\]
    \[=5{{\left( x+\frac{3}{5} \right)}^{2}}-\frac{54}{5}\]
    \[\Rightarrow \]\[y+\frac{54}{5}=5{{\left( x+\frac{3}{5} \right)}^{2}}\]\[\Rightarrow \]\[\frac{y}{5}+\frac{54}{25}={{\left( x+\frac{3}{5} \right)}^{2}}\]
    \[\Rightarrow \]   \[x+\frac{3}{5}=\pm \sqrt{\frac{y}{5}+\frac{54}{25}}\]
    \[\Rightarrow \]   \[x-\frac{3}{5}\pm \sqrt{\frac{y}{5}+\frac{54}{25}}\]
    \[\therefore \]      \[x>0\]
    \[\therefore \]we will take only      
    \[x=\frac{-3}{5}+\sqrt{\frac{y}{5}+\frac{54}{25}}\Rightarrow 5x=-\,3+\sqrt{5y+54}\]
    \[\therefore \]\[{{f}^{-1}}(y)=\frac{\sqrt{5y+54}-3}{5}\]             Hence proved.
    OR
    \[a*b=\left\{ \begin{align}   & \,\,\,a+b,\,\,\,\,\,\,\,\,if\,\,a+b<6 \\  & a+b-6,\,\,if\,\,a+b\ge 6 \\ \end{align} \right.\]
    \[2*3=2+3=5,\] since \[2+3=5<6\]
    \[4*5=4+5-6=9-6=3\], since \[4+5=9\ge 6\]
    The composition table for \[*\] is given as
    \[*\] 0 1 2 3 4 5
    0 0 1 2 3 4 5
    1 1 2 3 4 5 0
    2 2 3 4 5 0 1
    3 3 4 5 0 1 2
    4 4 5 0 1 2 3
    5 5 0 1 2 3 4
    The first row coincides with the top most row and first column coincides with the left most column. They intersect at 0, so, 0 is the identity element.
    \[a*(6-a)=a+(6-a)-6=0,\]\[[\because a+(6-a)=6\ge 6]\]
    \[\therefore \]\[6-a\]is the inverse of a for which each a is
    {0, 1, 2, 3, 4, 5}.


You need to login to perform this action.
You will be redirected in 3 sec spinner