12th Class Mathematics Sample Paper Mathematics Sample Paper-3

  • question_answer
    Find the area of the region bounded by the curves
    \[{{y}^{2}}=4ax\] and \[{{x}^{2}}=4ay.\]
    OR
    Using integration, find the area of the triangular region whose sides have the equation \[y=2x+1,\]\[y=3x+1\] and x = 4.

    Answer:

    The given curves are
    \[{{y}^{2}}=4ax\]  [right parabola]         ?(i)
    and       \[{{x}^{2}}=4ay\]  [upward parabola]   ...(ii)
    On squaring both sides of Eq. (i), we get
                \[{{({{y}^{2}})}^{2}}={{(4ax)}^{2}}\]
    \[\Rightarrow \]   \[{{y}^{4}}=16{{a}^{2}}{{x}^{2}}\]
    \[\Rightarrow \]   \[{{y}^{4}}=16{{a}^{2}}(4ay)\]                    [from Eq. (ii)]
    \[\Rightarrow \]   \[y({{y}^{3}}-64{{a}^{3}})=0\]
    \[\Rightarrow \]   y = 0, \[{{y}^{3}}={{(4a)}^{3}}\] \[\Rightarrow \] y = 0, y = 4a
    When    \[y=0,\] then x = 0
    When    y = 4a, then x = 4a
    Thus, the given parabolas intersect each other at
    0(0, 0) and A(4a, 4a). Then, the shaded part in the figure is the required area.
               
    For the curve \[{{y}^{2}}=4ax,\]
                \[y=2\sqrt{a}\sqrt{x}=f(x)\,\,(\text{say)}\]
    and for the curve \[{{x}^{2}}=4ay,\]
                \[y=\frac{{{x}^{2}}}{4a}=g(x)(\text{say})\]
    \[\therefore \]  Required area = Area of shaded region OACO
                \[=\int_{0}^{4a}{[f(x)-g(x)]}\,dx\]
                \[=\int_{0}^{4a}{2\sqrt{a}\sqrt{x}dx-\int_{0}^{4a}{\frac{{{x}^{2}}}{4a}dx}}\]
                \[=2\sqrt{a}\left[ \frac{{{x}^{3/2}}}{3/2} \right]_{0}^{4a}-\frac{1}{4a}\left[ \frac{{{x}^{3}}}{3} \right]_{0}^{4a}\]
                \[=\frac{4}{3}\sqrt{a}{{(4a)}^{3/2}}-\frac{1}{12}{{(4a)}^{3}}\]
                \[=\frac{32{{a}^{2}}}{3}-\frac{16{{a}^{2}}}{3}=\frac{16{{a}^{2}}}{3}\] sq units
    OR
    We have to find the triangular region area whose equations of sides of triangle are given as
    \[Y=2x+1\]                               ?(i)
    \[Y=3x+1\]                               ?(ii)                   
    and       x = 4                                        ?(iii)            
    The line \[y=2x+1\]passes through the points (0, 1) and (1, 3) and the line \[y=3x+1\] passes through the points (0, 1) and (1, 4).                
    Now, subtracting Eq. (i) from Eq. (ii), we get
                x = 0 \[\Rightarrow \] \[y=2(0)+1=1\]
    So, lines \[y=2x+1\] and \[y=3x+1\] meet at the point A (0, 1).                                      
    Again, solving Eqs. (ii) and (iii), we get   
                \[y=3x+1\] \[\Rightarrow \]\[y=3(4)+1\]     \[[\because \,\,\,x=4]\]
    \[\Rightarrow \]   \[y=12+1=13\]
    So, lines \[y=3x+1\] and x = 4 meet at the point C (4, 13).
    On solving Eqs. (i) and (iii), we get     
    \[y=2x+1\] \[\Rightarrow \]\[y=2(4)+1\]  \[[\because \,\,\,x=4]\]
    \[y=8+1=9\]                                 
    So, lines \[y=2x+1\] and x = 4 meet at the point B (4, 9).
    Graph of the required region is given below:
               
    We have to find the area of \[\Delta \,ABC\] shaded above.
    Hence, required area of \[\Delta \,ABC\]
                \[=\text{Area}\,\,\text{of}\,\,AOHC-\text{Area}\,\,\text{of}\,\,AOHB\]
                \[=\int_{0}^{4}{(3x+1)\,dx-\int_{0}^{4}{(2x+1)\,dx}}\]
                \[=\left[ \frac{3{{x}^{2}}}{2}+x \right]_{0}^{4}-\left[ \frac{2{{x}^{2}}}{2}+x \right]_{0}^{4}\]
    \[=\left[ \frac{3(16)}{2}+4 \right]-[16+4]\]
    \[=24+4-16-4=8\,\text{sq}\,\,\text{units}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner